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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3674

THEORETICAL PRESSURE DISTRIBUTIONS FOR SOME SLENDER
WING~BODY COMBINATIONS AT ZERO LIFT

By Paul F. Byrd

SUMMARY

Pressure distributions are calculated for some symmetrical wing-body
combinations at zero lift. The theory of the calculations is based on
the assumption of extremely slender wings and bodies and yields results
for both subsonic and supersonic speeds. The examples considered are
swept wings of constant chord mounted on bodies of nearly cylindrical
form.

Of particular interest is the effect of indenting the body on the
distribution of pressure over the wing. When the indentation is such as
to maintain a constant total area of the cross sections normal to the
stream, the theoretical pressure disturbances remain small throughout the
transonic range. With such indentation the isobars tend to remain smooth
and nearly parallel to the sweep of the wing surface.

INTRODUCTION

In several papers, important extensions to the Munk~Jones slender-
body theory (refs. 1 and 2) for lifting wings and bodies have been made
to include the theoretical effects of thickness on the aerodynamics of
wings and wing-body combinations. Ward (ref. 3), solving the linearized
differential equation for the perturbation velocity potential by opera-
tional methods, and employing asymptotic expansion of the solution,
investigated the flow around bodies of general cross section at supersonic
flight speeds. By a different procedure, similar results for a wing,
body, or wing-body combination at subsonic speeds have been developed
by Heaslet and Lomax (refs. 4 and 5). An analysis for subsonic flow was
also carried out independently by Adams and Sears (ref. 6) who, in addi-
tion, made an extension for not-so-slender wings. Confining themselves
to wings at zero angle of attack, Keune (ref. 7) and Oswatitsch and Keune
(ref. 8) have recently obtained a slender-body theory that is slightly
different from those of references 4, 5, and 6. In a more recent report,

igupersedes NACA RM ASWLJOT by Paul F. Byrd, 1954.
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2 NACA TN 3674

Harder and Klunker (ref. 9) have applied the basic ideas of the slender-
body approximation to the nonlinear transonic equation for the velocity
potential.,

The principal obJject of the present investigation is to apply the
general method of reference 4 in calculating the pressure distribution
for some special cases of nonlifting slender wing-body combinations in
subsonic and supersonic flow. The wing of the combinations is swept back
and has a symmetrical section with rounded leading edges. Determination
is made of the pressure for the wing alone and for cases when the wing is
mounted on & circular cylinder or combined with a body indented such that
the axial variation of cross-sectional area of the combination is constant.
The effects of Mach number and sweep angle are included in the results
presented.

LIST OF IMPORTANT SYMBOLS

bo value of x at which sg = s(x)
Cq root chord
cp pressure coefficient, ﬁ%g
o
35 pressure coefficient on indented wing-body combination
lo over-all length of the wing
n slope of wing leading edge (See sketch (f).)
M free-stream Mach number
r polar distance in y,z plane <;/;E—:_;§>
Re real part of a complex quantity
Ro radius of cylindrical portion of body
R(x) radius of indented body of revolution

sgn(x-§) sign of (x-§)
80 maximum value of s(x)
s(x) local semispan

8(x) local cross-sectional aree of wing alone
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t(x) spanvise distance from x axis to wing trailing edge

u perturbation velocity in the x direction

Uo velocity of free stream

v perturbation velocity in the y direction

vr radial component of velocity in yz plane

w perturbation velocity in the =z direction

X,¥,2 Cartesian coordinates (x downstream, y to starboard, z
upward)

B M2 - 1]

2] polar angle in yz ©plane

ANx,y) slope of wing surface in x direction

P perturbation velocity potential

P part of potential satisfying Pyy + P2z = 0

¢ complex variable (y + iz)

¢ complex variable (yi + 1z)

T constant related to T4

To maximum thickness of wing section

Subscripts

B body

1 lover surface of the wing (z = O plane)

sub subsonic

sup supersonic

u upper surface of the wing (z = O plane)

1) wing
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ANALYSIS

The thickness distribution of a symmetrical wing is prescribed.
Under the restriction that the thickness is small and that the configura-
tion is slender, formulas to be applied later (see "Applications" section)
will now be briefly presented for determining the pressure coefficients
for particular nonlifting wing-body combinations. Equations are first
given for the wing without a body, and are then modified for cases when
the wing is mounted on a circular cylinder or on an indented body of
revolution.

Nonlifting Wing Alone

The differential equation and boundary conditions.- Expressed in
terms of the perturbation potential ¢(x,y,z), the basic linearized par-
tial differential equation for subsonic as well as supersonic flow is the
familiar Prandtl-Glauert equation

(1 - Mo®)@yy + @y + @, = O (1)

where My 1is the free-stream Mach number. If the surface of a wing
z(x,y) is given, solutions to the differential equation must satisfy the
boundary condition that the flow is parallel to the wing surface. When
the wing is thin, it is sufficient to satisfy this requirement in the
plane 2z = O. Analytically, the expression of the condition is

3
(? = wu(x,y) = Uo _5‘_"‘_\_1_ = Ughu(x,¥) (2)
22=+0 X

where Ug 1is the free-stream velocity and wy(x,y) is the vertical
induced velocity on the upper side of the 2z = O plane.

Velocity potential.- When the flow is supersonic, the formula for
the perturbation potential subject to the boundary condition (2) is known
to be (e.g., see ref. 10)

(X,¥,2) = - & Q w, (& ,m) arccosh x -4 ¢ ay  (3)
? " O fo B/ (y - m)2 + 22

i, A

‘
H
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where the region of integration T 1is the portion of the plan form lying
within the Mach forecone from the point x,y,z. In the case of subsonic

flow fields, the solution of the differential equation (1) may be expressed
in the form

l b & x-§
Px,y,2) = - i J/\wu(g,n) arcsinh de dn (%)
ﬂaxfw BJ(y - n)2 + 22 ,

with T now extending over the entire plan form. These two solutions
yield the potential due to a distribution of sources of strength propor-
tional to the slope of the wing surface MAy(x,y).

2 2
- + 2
When the wing is slender, that is, if BA/iy " Q)g is considered
very small, further approximations to the linearized potential (3) and (k)
can be readily made. In this event, one may employ the approximate
relations

x =~ ¢ 2(x - &) )
arccosh ~ 1n
Bafly - )2 + 22 By - 7)2 + 22
> (5)
X - g 2|X - gl
arcsinh ® sgn(x - £)1N ——————
BNy - )2+ 2 B (y - m)2 + 22

vwhere the symbol sgn(x - &) means that the sign of (x - &) is to be
taken.

) 4

Consider now a thin pointed wing
of symmetrical section with straight
or sweptforward trailing edges as is
shown in sketch (a). Use of the
relations (5) in equations (3) and (4)
then gives the result (ref. k)

N x,¥,2) = Pa(x,¥,2) + &(x) (6)

J
X

Sketch (a)




|
|
|

e

6 NACA TN 367k

where
UO a(x)
P(x,y,2) = gf Ao n [y - 1)2 + 22]dy (1)
s2(x)
and
b'd
g(x) = ;-’g--a%f s'(g)lng-(—x—é'-ﬂdg (8a)
o}

for supersonic flow, and

1
Us d ° 2lx - &
g(x) = - E%S';f sgn{x - £)5'(&)1ln | 7 | at (8vb)
[o]

for subsonic flow. The function S'(x), the derivative of the cross~
sectional area of the wing in a yz plane, is found from

s3(x)
St(x) =2 E;J[‘ zu(x,n)dn (9)

55(x)

It is seen from equation (6) that the slender-body approximation to
the linearized supersonic and subsonic potentials consists of two parts.
The first part (®z) in each case is independent of Mach number and is a
harmonic function in the transverse plane; that is, it satisfies the two-
dimensional Laplace equation

¢y-y + wzz =0 (10)

The second part (g) depends on the cross-sectional area of the wing and
is a function of x and 8 only.

Inspection of equations (6) and (8) shows that the value of the
potential for a particular wing at some Mach number My can be written
in terms of the potential given at another Mach number My. Thus
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U
¢supﬁ1 = qupﬁo + 5% St(x)1ln gi

> (11a)
Uo B1
= + == 5'(x)ln —
(pﬂl.lel q)BUbBo 21 (X) BO
P
»
with By = /|M® - 1| and Bo = o/ |[Mo® - 1|. The supersonic and subsonic
potentials may also be related. If one has already found an expression
' for the supersonic potentlal, he can then obtain the subsonlic potentisal

| : by means of the equation

Bsub U st (&)
s |
Bsup v | x- 3 3 (11v)

i Certain symmetrical wings whose trailing edges are swept back as in
‘ sketch (b) can also be treated by the simplified theory, provided the
chordwise variation in shape of the

cross sections is sufficiently smooth 1LL

and gradual that the assumption of

two-dimensional transverse flow may 0

reasonably be applied. Since the >y
wing is at zero angle of attack and I-

the flow is symmetrical about the y=-stx),
xy plane, the source distribution
M(x,y) in the plane of the wing in
region W between the axis and the ;i
trailing edge is set equal to zero. - -
If the limits of integration are y< 1) WNE \ AV
properly adjusted, equation (6) will

then formally still apply and yield i
expressions for the potential in the —— S%—
two regions 1 and 2 of the sketch. X

Thus for region 1, in the 2z = O plane,
one obtains

Ug
Psub = Psup * Zx 8'(x)1n

Co

Sketch (Db)

U -]
wsup = —,(gf }\u(x’“)ln'yg - 7\2|dﬂ -
(¢}

. Uo
2n

B N TR e
.

X
%_[ S (8)m 3 (x - )&,  (xSco)  (i2a)
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and in region 2

UO 8 UO‘ a 0
Paup = % [ M(xm1n [v2 - n2fan - 52 5 [ 17 (O)1n(x - £t -
t o

22 [50ms (- N, (x2e) (120)
o
where
s(x) W
S,7(x) = b —-f sylx,man,  0<x < co
L )
s(x)
Sx'(x) - 4 %f zu(x,m)dn, co x5 1, J
t(x)

The subsonic solution is obtained from the supersonic solution by using
equation (11b).

Pressure coefficient.- After determining the potential for a wing
from the equations in the foregoing section, the pressure on the surface
of the wing is found by differentiation. The pressure coefficient is
related to the perturbation velocities by the equation (ref. 4)

s <[5 (D F @], o

which is an approximation to the complete Bernoulll equation consistent
with both the linearized differential equation (1) and the assumption of
slenderness. For planar problems, further simplification achieved by
neglecting the nonlinear terms (39/dy)2 and (39/dz)2 yields satisfactory
estimates for the coefficlent.

stk seiaan e w2 eren

B T bt Shd TS, e

B e
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Thus
.. 2 (29
ep(x,y,0) = i ax/z=0 (1kv)

where @ is obtained from equations (11b) and (12).

It should be pointed out, however, that equations (11b), (12), and
(14) will not furnish realistic results for the pressures' for a wing in
either subsonic or supersonic flow unless certain restrictions are imposed
on the gradient of cross-sectional area and its derivative S"(x). Con-
sider, for example, the pressure found along the line AB where regions
1 and 2 in sketch (b) join. In supersonic flow, one finds from equa-
tions (12) and (14b) that at this line there is a Jjump Ocp  in the pres-
sure coefficient given by

1l lim " 2€
Acp = ¢ -c = = AS"(cp)ln +
P P P '{ o)
1 2 T €= BJ&ﬁc& )

4 [EE A ,t)} 1 3‘-} (15)
dx u(x Co+e g By

where

&"(co) = Sl“(co) - SZ"(CO)

and where the usual assumption that S'(0) = S'(cy) = O has been made.
Evidently, along the line AB a logarithmic singularity will occur in
the pressure distribution in going from region 1 to region 2 if

S1"(co) # S2"(co). (The infinity would of course be higher than loga-
rithmic if AS"(cy,) is singular.) The formulas for the pressure coef-
ficients presented in this report and in reference 4 are therefore good
only for cases where the plan form and the slope of the wing surface are
sufficiently smooth so that there are no abrupt changes in either S' or
S". (This holds true also for the formulas given in references 3, 6, and
7. The restriction on S", however, may be somewhat relaxed in employing
the slender-body theory of reference 8.)

1Although the theory may give spurious infinite pressures on certain
portions of the wing, the results obtained for the wave drag by integrat-
ing the product of pressure and surface slope over the wing may be finite
and reasonable.

——
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Even if there is no Jump in the pressure coefficient at the line AB,
the slope of the pressure curve may not be continuous. It can be shown,
for instance, that a singularity will occur in the slope of the curve for
the pressure coefficient in case S"'(cy) is discontinuous.

Wing on a Cylindrical Body

The equations presented in the foregoing sections for the wing alone
will now be modified to yield formulas for calculating the pressure dis-
tribution on a combination composed of a
symmetrical wing zu(x,y) = -23(x,¥y)
mounted on an infinite circular cylinder
having radius Rg(see sketch (c¢)). The
surface of the wing chosen here will also
be considered symmetrical about the xz
plane, but the method applies equally well
lo 1f this is not the case. The procedure

‘ followed is essentially the same if the
fuselage is any body of revolution instead
of a circular cylinder.

In studying such combinations, it is
usually convenient to introduce a second
coordinate system. Let the yz plane be
represented by a complex variable

L=y + iz = relf (16)

and then consider a §; plane

!l-p/ane '/‘Zo gl =y ¢ izl = r]_eiel

s R R s
obtained from the § plane by the
Joukowski transformation

Sketch (c) .
L, =6+ (17)

The transformation (17) maps the { plane onto the §1 plane so
that a circle representing a section of the body in the § plane is
mapped onto a portion of the real axis in the §1 plane, while the part
of the real axis outside the circle is transformed into an adjoining part
of the real axis of the §; plane. (See sketch (¢).) It can easily be
shown from the equation that the geometric relations

R SR




NACA TN 36Tk 11

R02 2 2
=yt Nz R
s (18)
Y1 = 2Rgeos 6, 12 < R
2
81 = 8 + Bg- J

hold for 2z -equal to zero.

The technique emrloyed is to transform the boundary conditions from
the ¢ rlane to the , plane and to find a solution in the latter
rlane. The solution 1is then transformed back to the physical plane for
the completion of the problem.

Perturbation velocity potential at the wing surface.- A consequence
of the conformal transformation is that the complex velocities in the
two planes { and {; are related by the equation

d
v ~ iw = (vy - 1wy) 'E;'El' (19)

or, in polar coordinates (ref. 11),

R 2 9 R 2 w
V=V [1 - (-;?—) cos 26| + wy (—I-?) sin 20
2 'w 2
R R
Wo= Wy [1 - <T°> cos 20| - v; ('fe) sin 26 > (19a)
! RoV Ro\?
Vp =|vi cos 6§ + w; sin 0| |{1~-\ & + 2w | ¥ sin GJ

From these equations it follows that the boundary conditions in the 2z, =
rlane are

0

—
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Vi o= Vr = UO(dRO/d'x) =0 2 <R 2 )
1 ¥ 2 sin 6 2 gin 6 ? N 1
b (20)
W = L. ’ RiZ2<yi® < 8%
1 - RSZ/? g

with w related to the streamwise slope of the wing surface by equa-
tion (2).

The two-dimensional solution @ in the §; plane at 2z, = 0 is,
from equation (7),

81

1
0alx31,0) =% [ wlmmdinlyy - mlan, (21)
Putting now
R02
=1+t 1

‘and using relations (18) and the boundary conditions (20), one finally
has for equation (21)

s(x)

- n2 - R
Pa(x,¥) =-;(9f A{%x51m)1n (" - 09 (v"0® - Ro

¥n?

dn (22)

If one of the functions g given by formulas (8) is then added to this
equation for ¢, the veloclty potential on the wing may be obtained for
either supersonic or subsonic flow. Thus, for the supersonic perturbation
potential on the upper surface, there results

s(x)
U (¥2 - ) (¥*n® - Rot)
@sup = -“-gf xu(X;ﬂ) 111, q——y—z";lan 2 dng -
Ro
x
Uo o s'(g)ln- (x - g)at (23)
2n Bx

and for the subsonic potential

e oo s ke s e =

AR b, o i s B

SR

et

e e A e R s e
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Ug ) (¥® - 9 (¥*n° - RpY)
Psub = T Au(x,1)1n o2 -
Ro "
Us o o
e} [} ..2. -
T 5% \éﬁ sgn(x - £)5'(&)1n 5 |x - ¢las (2%)

Pressure coefficient at the wing surface.- The pressure coefficients
on the surface of the wing of the combination are obtained by differenti-
ating equations (23) and (24) with respect to x &and then employing
relation® (14b). Thus

0 8(x) (yz - nZ)(y2n2 . Roq,)
cpsup = -3 -a-; }\u(x,n)ln y2n2 an +
o
1 32 ¥ 2
pos [ s g - (258)
(e}
and
2 3 3{x) (¥® - 0®)(¥*n® - Ro*)
Peub ~ " ¥ S;J/‘ Au(x,n)1n TnE dn +
Ro
A 2 ¥
% 52 sgn(x - £)8'(¢)ln E'|x ~t| at (25b) ;;
°
or, with the aid of equation (11b), ;
1 :
B Ogt
cpsub = chu‘p = %" S"(X)ln Bub_}__ .9.. . (§) g (26)

Bsup 2% Ox , x=t

2As in the case of planar problems, the squared terms in the pres-
sure relation can be neglected in considering a combination whose body

is a circular cylinder. (See ref. 4.)

e s - . B . e g .Iﬁg,h.m.w,w.v.. e e
“ AR R AP et D ”“g&ﬂ{}_%’?&ih .
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The coefficient for a particular wing at some Mach number M;, written
in terms of the coefficient at another Mach number Mo, 1s

1 Bo
¢ = ¢ + =g" o 78} :
psupBl psupB0 7 S"(x)1n 81 (27a) ;

and ;
¢ = Cp + 1 S"(x)1ln EQ (27o)
psubﬂl subg : B

where By = o [MiZ - 1| and Bo = #|MoZ - 1].

It should be noted that formulas (25a) and (25b) are not uniformly

valid for all values of Rg. If the radius Rp 1s equal to zero, the
eguations reduce immediately to those

llL glven previously for the wing without
a body. As the radius approaches
infinity, however, one finds that for-
nmulas (25a) and (25b) yield a value of
the rressure coefficient that differ
from the results for the wing alone by

"
a term equal to §—§5l In % + Employing

the equations for values of Rp that

are large violates the assumption of
slenderness according to the approximate .
theory used herein.

When the wing mounted on the com-
bination is swept back, as shown in
sketch (d), the slope Ayu(x,n) is taken
S equal to zero in the gap between the
trailing edge and the body. The for-
nulas obtained in regions 1, 2, and 3

o for the supersonic pressure coefficient

Sketch on the upper surface of the wing are
eteh (d) then as follows:

Region 1:
s(x
o5 P (v% - n®)(y®n® - Rg*) |,
cp = .- Ku(xxﬂ)ln ] 2 T\ +
1 T dx " 1
o} .

1 ¥ ¥ 2
;g;if Sl'(&)lnh— (x - 8)ag, (0<xSco) .
o
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Region 2:
25 f¥ (¥ - n2) (y*° - Ro*)
Cpp = = = S;f Au(x,1)1n Y2ﬂ2 ' dn +
t(x)
Co X
1 32 1 3% 2
5.2 / Sp'(E)In(x - £)ag + = S;?Z: S2'(8)1n = (x - g)de
(co £ x £by) (28b)
Region 3:
50
23 (¥% - ) (y®3% - Ry?)
°p3 = ° ¥ S5« \/P Au(x,7)1n L yznan . dn +
t(x)
bo
12 [ 1 32
?S'x_zf S1'(&)In(x - &)dE + ',T‘é')zzfsz'(g)ln(x - E)dE +
o] Co
J2 *
% 52 J/‘Ss'(ﬁ)ln g (x - &)dg, (bo £ x £ 15) (28c)
by

where bo 1s the value of x at which sg = s(x). Use of the relation
(26) in conjunction with the above three formulas will furnish equations
for the pressure coefficlient in subsonic flow in the various regions.

Wing on an Indented Body

In the previous formulas for the pressure distribution attributable
to thickness, the coefficient becomes infinite® when the Mach number
approaches unity because the formulas contain a term involving S'(x)ln E.

It is thus possible to construct slender configurations which will give
a theoretically finite pressure coefficient even at the speed of sound.
Under the assumptions of slender-body theory, this may be achieved if the
gradient of cross-sectional area of the configuration in a yz plane
vanishes identically. Combinations constructed in this manner on an

isfhis of course 1s not a property of slender-body theory alone.

Excerpt in particular cases, steady-state linearized theory also in general
yields infinite pressures at fp = O,
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infinitely long fuselage are slightly indented in the vicinity of the
wing and possees, according to the theory, the important property of
having zero wave drag.

Velocity potential at the wing surface.- Let the surface
zu(x,y) = -z3(x,y) of a symmetrical wing be specified and assume that
the indented fuselage is a body of revolution which deviatee slightly
from a basic circular cylinder of radius R,. The cross-sectional area
S(x) of the exposed wing is then given by

(x)
S(x) =4 z,(x,n)dn (29)
R(x)
where R 1is the radius of the indented
body. (See sketch (e).) In order for
A the streamwise gradient of cross-

sectional area of the entire combina-
tion to be zero, the relation

nR2(x) = nR,2 - 5(x), S(x) < < nRy2

(30a)

X
Sketch (e)

or
onR %Bxi = -8'(x) (30b)

must hold. Since the quantity S(x) is known from formula (29), equa-
tion (30a) can thus be solved for the radius R of the body.

Now the perturbation potential in the ;1 plane at 23 = O has the
form

81
Pa(x,¥1,0) = ;l;f vi(x,m)in |y1 - m | dm (31a)

81
or

831 .
21
9o(x,¥1,0) = :jﬁr vi(x,m)nly: - mlan + %y/\ vi(x,m)1nly1? - na®lany
1 T (31b)

s TR AR e e

[ RRESN
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with
nz 2
8 =8+, y1=y+-y-, r, = 2R (32)

The term corresponding to the g(x) of equations (8), which is to be added
to this ¢p, is zero since there is no change in the croes-sectional area
of the specified shape of the yz plane.

From the last relation in equation (19a) it follows (upon putting R
in place of Rg) that in the interval m32 < r;2 tne boundary condition
may be expressed

ve  (ar/ax)U,

I TR e ooy R (33

Wy

For very thin wings, and for deviation Rp - R of the same order as the
wing thickness, the condition in the interval r,? < W,® < 8,2 1is approxi-
mately

v Uo(dzy/30)

. — (34)
1- R 1 - R/P

Wy

Making use of equation (33), one can then write the first term on
the right in equation (31b) as

ry
1 dR 2 2
;u/N w,(x,n,)1n ly, - n,ldn, = UGR & mY Yy 2R (35)
-rl

where, from equation (30b), the quantity R(dR/dx) may be replaced by
-1/2n times the gradient of cross sectional area S'(x) of the wing.
In the second integral in equation (31b), set

R2
= +  —
N, =10 n

and use relations (34). The final form for the velocity potential at the
upper surface of the wing thus becowes

Uo
?(x,y,0) = 5 S'(x)lny +

(¥2 - n%)(y*n? - RY)

dq, Y2R (36)
yen2

Uo
w [ Mulx,n)1in
R

—
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Formula (36) for the velocity potential for a slender combination
vhose body is indented according to the area rule (ref. 12) is evidently
independent of Mach number and therefore holds (within the assumptions
of the simplified theory) for subsonic, transonic, and supersonic speeds.
If the limits of integration are adjusted, the equation may also be used
for combinations with sweptback wings.

Pressure coefficient at the wing surface.- On the surface of the wing
the pressure coefficient can be found from relation (lha), that is,

. _ (2%, 1 §§>2 J - 93#)2 7
°p,, [uo&:*a;% 7 (37)

where the potential ¢ is obtained from equation (36).

APPLICATIONS

The formulas which were given the preceeding part of this report will
now be applied for the purpose of performing detailed calculations of the
pressure distribution for some particular nonlifting combinations having
s symmetrical wing with constant chord.

Wing Mounted on a Body of Circular Cross Section

Pressure coefficient on the surface of the wing.- The wing of the
combination® considered here is mounted on a circular cylinder and has
an upper surface defined by

zu(x,¥) = T(com - 8 + yWN(s - y)(com - 8 + ¥) (38)
with
6 = mx + Ry
zg(%,¥) = zyu(x,-¥) = -z3(x,y) = -z3(x,-¥)
and

87
3m2c°aJ§—

4This combination will be referred to as the basic combination.

(39)

T =

e s <P Shcmat

e N e o
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the constant Ty being the maximum thickness. The profile resembles a
Joukowski section and 1s the same for all values of y. On the starboard
side of the wing, the slope of the surface is given by the relation

dz,, vy (x,y) o Coll - 8 + ¥
= A (x,y) = J‘—ﬁ—o—— =5 (com - ke + hy)f——é—_-;—— (ko)

From this equation it is seen that the slope possesses a square-root
infinity at the leading edge and is zero at the trailing edge.

The gradient of cross-sectional area of the wing is

Si'(x) = lmns(co - x)'Jx(co - x) = bm z,(x,R5), (6 £x £ co) (4la)

in region 1 in sketch (f) and is
S2'(x) =0, o< x<(8y - Ry)/m (41b)
in region 2; for region 3,

Sa'(x) = -4m z,(x,s,), (80 = Ro)/m < x £ (8g - Ry + com)/m (415)
Since S" is not continuous across on
the line AB, the approximate theory
employed here will give unrealistic
results in the regions of the tips.

In calculating the pressures for the

wing-body combination, attention will T £E *y
therefore be confined to regions 1

and 2 only. The calculations to be Co / Y=mX + R

given in subsonic flow will be based l ) |

on the assumption that the tips are YmX+ Ro-Com
located far downstream and have no 2

effect on the other two regions.

Use of the equations (40) and 3
(41) in formulas (28a) and (28b) yields
the following final results for the So——
supersonic pressure coefficient on the M
upper surface of the wing for regions — R
1l and 2:

L]

-
LYY,
—A.

'3 3

Sketch (f)

AR —
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Region 1:

BT _1\/'—,(— Co - X 8xy(cy - x)
cPsup = == [léRotan ry— +2m(co - 4x) % 1n Boaly? - Fg?) +

F(x,y) + F(x,-y) - 2F(x,0) + F(x,§%2>+ F(x, - 35‘;5)],

(0 £ x < co) (k2a)

Region 2:

“Peup = wlT 8Ry + 2m(kx - cg) lx;co + 2(ks - com)/:;£+

B - Coll + ¥ Ro?\ [8- com-Ro2/y
(com-hs-hy)/ 5y +<com-ha+h y>/ e +

(c w o he b Ro?) S ~-com + Roz/y
° y s + Ro?/y

(co <x,8-comgcy<x; 8=mx+Rp)

(42v)
where
F(x,m) = (com - 48 - L7) /L:;"%“f_ﬂ
[3 - ta.n'l (Co -x)(2s + 1) - (nx + Roco) ] (130)
2 2vx(cy - x)(8 + 1)(8 - com + 1)

when cm -8 - 1 <0, and
Coll -~ 8 - 1)

F(x,n) = (com - ks - 4n) P

co(n + Ry)

——

1n

(co - x)(28 + ) - (nx + Roco) +¥x(co - x)(8 + M)(com - 8 - M)
(43b)

when com -8 - 1 2>0
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It is seen from equation (26) that the formulas for the pressure
coefficient in subsonic flow can be obtained by adding two terms to the
above equations for the supersonic pressure coefficient. Since the value
of S' 1in region 2 is identically zero, the terms to be added for region
1 become

c
- é}-éb;f S (§g a = vo®(4x - 3col, (x £ cp) (4ba)
)

and for region 2

co
-é& gi‘foglgs% a = fms[;x - 3¢ + (eg = Ux) z ; cé]’ (x 2 co)
o

(Lkb)

The subsonic pressure coefficient on the upper surface of the wing can
therefore be written in region 1 as

o3 ,co - X Bsub
Pgub ~ “Peup = [u(hx - 3eg) + 2(kx - <o) X i 3sup] (43e)

and in region 2 as

C

X

X = C
Py = cpsup + mar[hx - 3co + (cg - 4x) 0] (45b)

where cpsup is given by equations (L42).

Formulas (42) and (45), which give the pressure coefficients on the
wing of the combination indicated in sketch (f), will be plotted and the
results discussed in a later section. An obvious result noted now is
that in region 2 the formulas do not depend on Mach number for either
supersonic or subsonic flow, but that the subsonic coefficient in this
region is always greater than the supersonic coefficient because the
inequality

msf[hx - 3¢o + (¢ - th/ f—i-sg] >0 (46)

holds for all values x 2 cge.




As a check, let us ncw consider the asymptotic behavi
tions (38), (42b), and (45b) far outboard along the wing.

pose, we introduce a change

formation

and

X =

Yy - Ro

xpnsin 6 + ynsin 6

1]

-Xpcos 6 + ypsin @

one can then write

Equastion (38) thus becomes

X =
y-Ro=
Yn =
Sketch (g)
e, = com/Jl +
My = m,/Jl + w® s
Uy = Uon/Jl + 2
By = N1 + m? )
2y = S0 (cn = %)™ %(xn)
3 3°ng

NACA TN 3674

mx - (y-Ro)

3

J1 + m2

x + u(y - Ro)

J1+ o

or of equa-
For this pur-
in coordinste system by means of the trans-

(47a)

(See sketch (g).) Setting tan 6 = m,

&(un)

J

(48)
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which agrees with the approximate equation employed in two-dimensional
section theory for a thin Joukowski base profile of thickness ratio

—To _ (See ref. 13.) The pressure coefficient for such a two-
343,
dimensional airfoil is
e @)
TR e - (3-4(T (498)
cp Un BXn 3 J-3.cn an cn

or, written in terms of the xy systenm,

cp = - ;%;_2. [3com - 4(mx - y + Ry)] (49b)

This equation is in agreement with the asymptotic expression of the pres-
sure coefficient for region 2 obtained far outboard along the wing from
either equation (42b) or (45b).

Pressure coefficient on the body.- The formula for determining the
pressure coefficient on the surface of the body is (ref. 4)

__[2 3% 1 30 )2 _(g_x;a
‘g [Uo$+005’ (M)L dx) (50)
When the body is a circular cylinder, this relation reduces to
=-§@> (50b)
Pp U\

It is apparent that application of equation (50b) requires a knowledge
of the value of the potential ¢ in space, so that formulas (28), which
hold for z = O, must be "analytically continued." One way that will in
effect accomplish this is as follows:

Set

and form the function
°(x:§:°) = CP(X,C,O) + 1'(":;;0) (51)

———



S
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vhere ¢(x,{,0) 18 taken from equations (23) and (24), with the function
¥ defined by>

8(x)
*(xygyo) "‘f Vu(x)ﬂ)dn (52)
¢

The constructed function {51) will obviously satisfy Laplace's equation
in the yz plane; and it can be verified without difficulty that the
boundary condition vy = O is also satisfied. The coefficient on the
body can then be calculated from the formula

cp = - T Re 333) (53)

where the symbol Re means that the real part is to be taken.

For region 1, the final result obtained for the pressure coefficient
on the body in supersonic flow for the basic combination considered in
this part of the report is

. s -1 b S ie
cpaup = = 16R, tan 'lco — 2F(x,0) + F(x,Rye™") +

‘19) +

F(x,Roe-ie) + F(x,-Roeie) + F(x,-Roe

2

i
- 8x(co - x)e
Re | 2m(co - hx)~/c° % Z 1n 2 -

BCO(eaie - l)Ro

Cott = 8 + Roeig

s - Roel®

(x < ¢p)

in(com - bs + hRoeIGXJI
(5h4a)

where the function F(x,n) is given by equations (43). The result found
for the supersonic pressure coefficient in region 2 can be put in the form

An arbitrary real function E(x) may, in general, be added to the
right side of equation (52). Such a function, however, would in no way

1
i
1
H
3
1
3
3
H
:

affect the real part of 3¢/0x, since iE is purely imaginary.

—
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2 + 2(ks - com)/ 2 -Bcom +

i6
i9 8 + Roe - Coll
4YRoe” ") 15 +

cpsup = @ T|8Ry + 2m(4x - cg)

(com - Ls -
s + Roe
: _19 8 + Roe - com
(com - Us = )J/ —7p +
o€

8 = R e - cpml
(com - Ls + hRoeie) 2 o 4
8 - R eie

(Com - Lg

+

“9’/8;’?; |,z ()

Corresponding formulas for the pressure coefficient on the body in sub-
sonic flow are obtained from the above two equations by adding to them
the terms on the right of equations (L4ba) and (L4b), respecttvely. For
any fixed value of y in region 2, relations (45b) and (46) furnish the
inequality

“Deub > Peup (55)

which, as mentioned before, is also true for the coefficients on the wing.

Wing Mounted on an Indented Body

.

The constant-chord wing whose thickness distribution on the starboard
side is given by

2,(%,¥) = T(com -8 +y)V(8 - y)(com-8 +y), R(x)SySe

8 = mx + Ry (56)
r = 87 ) )

3m2co? |3
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will now be combined with an indented body of revolution which deviates !
slightly from a basic cylinder in the manner that makes the local cross- ‘
' : sectional area of the configuration
X lL/ a constant. The wing has the same
° profile along EE as the one in the
previous example. (See sketch (h).)
) Since the gradient of cross-sectional
area of the combination is set equal
to zero, the wave drag, according to
the slender-body theory, is also zero.

The cross-sectional area of the j
-£ wing in region 2 is equal to the con-
stant

b—5—

—

|
L

|

! s

' Z Sp(x) = 4 fzu(x,n)dn _ QT (o)
)

|

|

L
E 8=col

y:mx 'Ro -COm

16

and the radius of the indented body
z in this region is therefore the con-
stant

S, (x) co3m3
R, = Ry /1 - -3-—-“302 = R, /1 -
(58)

Corresponding equations for region 1l are

Sketch (h)

s
-1 Com = 28 + 2R,
Sl(x) = L"fzu(x,ﬂ)dn = -]'.‘.—2 {31:13003005 e +

Ry

2(2(s - Ry)(Teqm - b8 + 4Ry) = 3cq2m”)d (s = Ry)(com - 8 + R'l)}(sg)

Rl(x)=R°/1-§-’=(—°;—)-; 0 <Ry SRy <Rg (60)
Ro




e e s e A SRS SR s
(]

s

NACA TN 367k 27

Equation (60), however, does not give an explicit value of the radius

in region 1 because the function S; 1itself involves R,. Moreover,
the function S; 18 a transcendental function of R;, so that equa-
tion (60) can only be solved by graphical or other methods of approxima-
tion. By means of the mean-value theorem, we can write the equation in
the form

S1(x) = S31(x) + bzy(x,d)(Ro - Ry) (61)

where d 1is a certain value in the interval Rj; <d <Ry, and

8;1(x) = %;; [E(lhxco - 8¢ - 3c02)J x(co = x) + 3cy3cos™2 EQEé—gi ] (62)

i1s the cross-sectional area of the wing in region 1 neglecting the addi-
tional area exposed by the indentation. Since the deviation Ry - R; 1is
assumed to be of the same order as the wing thickness, neglect of the
term 4z,(x,d)(Ro - R;) will evidently introduce only an error of the
second order in thickness. For very thin wings, the radius R; may thus
be approximated by

S12(x) Omssssmmmemmmsmssssss
Ra(x) = Ro 1 - el CE)

which is now an explicit function
Of X. 5

Sketch (1) indicates the varia-
tion of the radius as a function of _A_
x/co for To/mco equal to 0.1 and 7
values of Ro/mc, equal to 0.5 and
1.0. 0

o 5 0 5 20 25 30

Relations (14b) and (53) can be Xt
immediately employed for determining
the pressure coefficient on the sur-
face of the wing and on the body in Sketch (1)
region 2, because the portion of the body in that region is a circular
cylinder. Use of these relations with equation (36), (57), and (58), then
finally yields for the coefficient on the upper surface of the wing

8 ~Coll 8= Coll 4+
gpa - sz[g(ua - 3com) + 2(48 - cgm) 5° + (com - ks -hy)./—;-?-;l +

Rp? - ~Rp? Rp2 s-cm.+R2y
Gom-hs+l+ ;>JB c°m43/»/y+<:°m-hs-h-§->/ siRﬁr]

8 = R2/y

(8 -com<y<s) (64)

MRS "‘wv*«s@; R AT e
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and for the coefficient on the body

ie
8- cgm 19) 8 - com +Roe +

8 -Ry eie

!p =w@r|2(ks ~ 3com) +2(4s - com) +(com = be - kRge

ig

-16
- Roe” i8 - coll = Rye
(c m-ha-hReiej “Sotr TR +(com - 48 + 4Roe / =
° 2 ) 8 - Rpe~10 (e e ) 8 - Relf

-i6

(com= bs + URge j'9)\/ = Sou - Fae

- Rze"ie (65)

These equations are employed for

) Ro Rg2 comr
> - — ———
X<C "™ m2 L

the equality sign giving the value of x at the trailing-edge fuselage
Junction. The two formulas do not involve Mach number and apply for sub-
sonic, transonic, and supersonic flight speeds. Coumparison of formula
(64) with equations (42b) and (45b) shows that for a fixed y in region 2
the inequality

Cp > cpSUb > Cpsup (66)

is satisfied when x 2 cg. Values calculated in region 2 for the subsonic
and supersonic pressure coefficients along a section on the surface of the
wing of the basic combination will thus be less than the values obtained
for the coefficient 'Ep on the wing surface of the indented combination.

In region 1, the body is not cylindrical but it is found that the
squared terms in the pressure relation (37 may be neglected since they
contribute only quantities involving the second and higher order in wing

2
thickness that are small in comparison with - b—o- ?; . Even the first

term in relation (37) gives rise, for the particular combination consid-
ered, to some small terms of the second order. Such quantities, however,
are also found to be negligible. The formulas to be presented here for

the pressure coefficients in region 1 will therefore contain (1ike those
for region 2) only terms of the same order as the thickness of the wing.

0
I
i
%
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(Tg+8-w%)(Tyg-9)(L-u>- 8)(Uu-8) e
(ol) Tyl - (*g + 1) (mCo - 82) + (8 -m%0)8g

(n+8n-wo2) = (UX)TL

0> UW+s-w 03 pue

—..ﬁm+ s -uf)(Ty-8)(L+s-ud)(h-8) p2+TuS- (Ty +U) (% -82) + (8 ..soﬁmdn.n

A@Wv A.Hm - —._.VOOE
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ﬂ.mlmﬂ\ (g + sy -m™0) = (Uox)Td
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o> 8- ° oTyh + 8 ~mO ¥t
(89) —fyre e (g2Tan +8n )
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30 NACA TN 3674
NUMERICAL RESULTS AND DISCUSSION

Graphs of the pressure coefficients for a wing alone and for the
two wing-body combinations in sketches (f) and (h) are shown in figures 1,
2, and 3., Figures 1 and 2 give plots for the coefficients along several
spanwise stations of the basic cowbination (Rg/com = 0.5) for subsonic
and supersonic flow at mp = 0.5, while figure 3 presents plots of the
coefficient for the indented wing-body combination which are independent
of Mach number. The plot in figure 4 gives the variation of the pressure
on the body in the plane of the wing.

Figures 1 and 2 show that, except at the wing-fuselage juncture, the
pressure coefficients have a finite negative® value at the leading edge
and increase to finite positive values at the trailing edge. On sections
which are cut by the plane x = co (i.e., passing through the trailing-
edge fuselage juncture) the slopes of the curves are discontinuous. It
is also apparent that the effect of the presence of the body on the coef-
ficient does not extend very far downstream beyond the trailing-edge
fuselage juncture; the difference between the calculations for the wing
on the comwbination and those for the wing alone, for instance, are too
small to show up in the plots for sections more than one chord length
from the body.

In figure 3, the pressure coefficients for nearly all sections on the
wing of the indented combination are very close to the curve for the two-
dimensional wing. The discontinuity in the slope of the curve that was
quite noticeable along sections such as BB of figures 1 and 2 is far less
apparent in figure 3.

The graph in figure 5 is the function which, according to equa-
tions (27), can be added to the values given in figures 1 and 2 for the
subsonic or supersonic pressure coefficient along the section AA and BB
of the wing to yield values of the coefficient at other Mach numbers.
(Sections CC, DD, and EE lie in region 2 where the coefficients do not

depend on Mach number.) For example, the pressure P at the
(1o/co)m

leading edge along BB in subsonic flow for mg = 0.4 is, using figures 1

and 5 in conjunction with equations (27), -h.1 -0.2 = -k.3.

Figure 6 shows isobaric charts of the pressure coefficients for the
wing without body in subsonic and supersonic flow at m8 = 0.5, and also
— 6 The occurrence of a negative pressure at the nose of a Joukowski-
1ike section ies the result of the thih-airfoil siwplification. A wmore
accurate theory would show a small region of positive pressure (i.e., -
a stagnation point with the maxiwum value equal to the impact pressure
of the cowponent of stream velocity normal to the edge) .
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a chart giving the two-dimensional results. The figures 6(a) and 6(b)
indicate that the pattern of the isobars in the region behind the trailing-
edge fuselage juncture is essentially the same as the two-dimensional in
figure 6(c), but that in the region near and upstream of the juncture, a
marked deviation from the straight isobars of the two-dimensional case is
evident.

Isobaric maps are also shown in figure T for the basic wing-body
combination in subsonic and supersonic flow, and for the indented wing-
body combination. Figures 7(a) and 7(b) illustrate that in the region
downstream from the trailing-edge fuselage juncture (even near the juncture
itself) the isobars are not much different from those for the wing alone,
and that the body therefore has little effect in this region. In the
region adjacent to the body, the pattern of the isobars is qualitatively
similar to the case for the wing alone but the pressures are lower. A
remarkable difference between the chart in figure 7(c) for the indented
combination and those in figures 7(a) and 7(b) for the basic combination
is that the isobaric pattern on the wing for the indented combination is
essentially two-dimensional over practically the whole wing.

Exsmination of the three charts in figure T also indicate that the
maximum negative pressure on the wing occurs at the leading edge near the
boundary between regions 1 and 2. In fact, it can be shown that the max-
imum occurs at the boundary. In view of the inequality (66), indentation
in accordance with the area rule reduces the maximum perturbation veloci-
ties on the wing.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 7, 1954

REFERENCES

1. Munk, Max. M.: The Aerodynamic Forces on Airship Hulls.
NACA Rep. 18k, 192k,

2. Jones, Robert T.: Properties of Low-Aspect-Ratio Pointed Winge at
Speeds Below and Above the Speed of Sound. NACA Rep. 835, 1946.
(Supersedes NACA TN 1032.)

3. Ward, G. N.: Supersonic Flow Past Slender Pointed Bodies. Quart.
Mech. and Appl. Math., vol. II, pt. 1, 1949, pp. 75-97.

4, Heasslet, Max. A., and Lomax, Harvard: The Calculation of Pressure
on Slender Airplanes in Subsonic and Supersonic Flow. NACA TN 2900,

1953.

]



32

Te

10.

11.

13.

NACA TN 367k

Heaslet, Max. A., and Lomax, Harvard: Supersonic and Transonic
Small Perturbation Theory. Section D., vol. 6, of High-Speed
Aerodynamics and Jet Propulsion. Princeton University Press, 195L.

Adams, Mac, C., and Sears, William R,: Slender-Body Theory =- Review
and Extension. Jour. Aero. Sci., vol. 20, no. 2, Feb., 1953,
pp. 85-98. -

Keune, Friedrich: Low Aspect Ratio Wings with Small Thickness at
Zero Lift in Subsonic and Supersonic Flow, Kungl. Tekniska
Hogskolan, Stockholm., Institutionen flr Flygteknik. Tech. Note 21,
June, 1952.

Oswatitsch, K., and Keune, F.: Nicht angestellte Korper kleiner
Spannweite in Unter- und Uberschallstromung. Zeitschrift fur
Flugwissenschaften, Bd. 1, Heft 6, Braunschweig, Nov. 1953.

Harder, Keith C. and Klunker, E. B,: On Slender-Body Theory at
Transonic Speeds. NACA RM L54A29a, 1954.

Lomak, Harvard, Heaslet, Max. A., and Fuller, Franklyn B.: Integrals
and Integral Equations in Linearized Wing Theory. NACA Rep. 1054,
1951. (Supersedes NACA TN 2252.)

Lomax, Harvard, and Byrd, Paul F.: Theoretical Aerodynamic Charac-
teristics of a Family of Slender Wing-Tail-Body Combinations.
NACA TN 2554, 1951.

Whitcomb, Richard T.: A Study of the Zero-Lift Drag-Rise Charac-
teristics of Wing-Body Combinations Near the Speed of Sound.
NACA RM L52HO8, 1952.

Allen, H, Julian: General Theory of Airfoil Sections Having Arbitrary
Shape or Pressure Distribution. NACA Rep. 833, 19L5.




G NACA TN 3674 33
.5.4 R e
-—- Tivo-dimensionol
¢ hd T y -48}+ W
a 86, y*Ro+ % ~ — With boay
_L CC, y*Re*Com 32 A Without body
00, ’.RO' [2 . ",i ~~~~~~
— . AT .
% EE, }"'&‘2&”7 WS 1' \L.k\ \‘.‘
; 0 "' - \~ .
g '; \F‘\ \\\
:i 0 ] \‘ \\ *
-’ T
! Saction AA \\
} /6
2 3 o 2 40 60 80 KO
{ Percent chord
-64 -64
-—- Two-dimensionol — - Two-dimensional
-48 -— With body -48 — With and
-32 R -32 \§\
‘ A52£55 \\Qiﬁggé\\ éséﬁi ‘§§§§\;
'/.6 - \\\ '/6 \
N\ \
! 0 \\n 0 N
. Sechon BB N Secton CC
L6 N 6
0 20 40 60 80 0O o 20 40 60 80 [0
Percenvt chord Percent chord
-64 -64
% - — - Two -dimensiona/ -—- Two-dimensional
: -48 — With ond -48 — With ond
AN wthout body wihou! body
N
-32 . -32 o
= . Y ]
?’ 0 \‘ 0 \\
L 6 Sectian DD Secton EE \
b “c 20 40 60 80 w0 o 20 40 60 &0 wo
Percent chord FUnMVcMmd‘Kigggj’

basic combination; mf = 0.5.

e R

P

Figure l.- Subsonic pressure coefficient on upper surface of wing of the




64 -—- Two - dimensional
— With body
-48 N - Withou! body
.
% ¥ — b\ -
o | —+ \\
Edm N
-l6 S =
\\
\\
o r
. \\\
Section B8 \\
st 20 <40 60 80 00
Percent chord
-64
- - Two-dimensiono/
-48 ~ With and
D mithou!
) bosy
-32—M
cs \
-6 - S
0 N
Secton DD
16
(v} 20 40 60 80 Mo

Percent chord

-64
-—- Jwo-dimensional
-48 — With and
-32 N
G §:§
m%b_ R
_/. ‘\
A
o \ %
Secton CC N
[60 20 40 60 60 /00
Fercent chord
-64,
-—-Two-dimensionol
-48 —With ond
N without body
N
-Z2—IN
-6 i\k\\
0 \‘
Section EE
/6
(7] 20 <40 60 80 /00

Percent chord kA

Figure 2.- Supersonic pressure coefficient on upper surface of wing of

the basic combination; mf = 0.5.
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